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Figure 1: Conservative evaluation of transcendental functions on a floating-point interval: (left) for a monotonic function, it is sufficient
to properly round – one up and the other down – the values computed at the two endpoints of the interval; (center) for a non-monotonic
function, we need to know the values of the maxima and minima within the interval (center); we also support common functions with two
arguments, such as the distance of a 2D point from the origin, and the atan2 function (right). All floating-point evaluations are correctly
rounded to warrant the tightest interval about the real value.

Abstract
Interval arithmetic is a practical method for robust computation, bridging the gap between fast, but inexact, floating-point
arithmetic and slow, exact arithmetic, such as rational or arbitrary-precision. In this system, numbers are represented as inter-
vals bounded by floating-point numbers, and operations are performed conservatively, guaranteeing that the resulting interval
contains the exact mathematical result. We extend a fast C++ library for interval arithmetic by adding support for several tran-
scendental functions. A key feature of our library is that all operations are correctly rounded, ensuring the resulting interval
is the smallest floating-point interval that contains the true result. We demonstrate the library’s effectiveness by applying it
to complex non-polynomial problems, including surface-surface intersection and continuous collision detection for geometric
primitives undergoing roto-translational motion.

CCS Concepts
• Mathematics of computing → Interval arithmetic; Mathematical software performance; • Theory of computation →
Rounding techniques;

1. Introduction

Robust geometric computation is a critical component of many
applications in graphics, such as collision detection, minimum
distance computation, element inversion, and Boolean operations
[SPH∗25]. Although floating-point arithmetic is fast, it can easily
generate inaccurate results that may lead to unpredictable, often

catastrophic outcomes [Gol91, BB15]. In contrast, exact computa-
tion, using methods like rational arithmetic or arbitrary precision
floating-point arithmetic, is extremely slow and often impractical.
Moreover, such methods are exact only for algebraic operations.

Interval arithmetic bridges this gap by providing a viable al-
ternative. It offers a balance between performance and accuracy,
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giving conservative estimates of exact computations at a moder-
ate speed penalty compared to standard floating-point arithmetic.
In this model, all real values are represented as intervals bounded
by floating-point numbers. Expressions on these intervals are com-
puted in a way that guarantees the resulting interval will contain the
true mathematical result (Figure 1).

As the width of an interval grows during computation, it is cru-
cial to minimize this propagation of uncertainty to maintain pre-
cision. This is achieved through correctly rounded (CR) opera-
tions, where each elementary operation returns the tightest possible
floating-point interval that contains the exact result. Apart from CR
operations yielding improved precision, correct rounding can en-
sure bit-by-bit reproducibility: because the result to be returned is
well-defined, an expression evaluated with correct rounding will
return the same result on any machine, and with any correctly-
rounded implementations. Without this property, brittle code is sub-
ject to unexpected bugs that are hard to replicate, and results that
are not consistent over time due to improvements to the underlying
mathematical libraries.

The 2019 revision of the IEEE 754 standard for floating point
arithmetic requires a compliant implementation of a function to
round correctly for all inputs [iee19]. Indeed, required opera-
tions such as summation, subtraction, multiplication, division, and
square roots produce the same, correctly rounded results on any
IEEE 754-compliant machine. However, this is not true for recom-
mended functions like sin or log: because they are not mandatory,
mathematical libraries are allowed to implement fast, non-CR rou-
tines that are not IEEE 754-conforming, but the language imple-
mentation as a whole will be conforming as long as the mandatory
operations are CR. As a result, most operations in existing mathe-
matical libraries are not correctly rounded. We are not aware of any
existing libraries that guarantee the creation of as-tight-as-possible
intervals when the expressions involve this kind of operations. See
Section 2 for further discussion.

In this paper, we describe the design principles of our TIGHT
library for correctly rounded interval arithmetic, which always pro-
duces as-tight-as-possible intervals, is faster than any existing in-
terval library, and supports transcendental functions. Our original
contributions include:

1. We extend the NFG library [Att25] – which provides the most
efficient implementation of interval arithmetic to date, but is
limited to algebraic operations – with transcendental operations,
based on the CORE-MATH floating-point correctly rounded im-
plementation [SZG22]. In Section 3, we discuss the challenges
involved in extending transcendental operators to intervals while
guaranteeing correct rounding.

2. We integrate our library with the recent Domain Specific Lan-
guage MiSo [SPH∗25] that supports the fast prototyping of non-
linear constraint solving and optimization. Extension of the lan-
guage with transcendental functions largely broadens its spec-
trum of applicability.

3. We demonstrate the effectiveness and efficiency of our li-
brary by implementing surface-surface intersection between
non-algebraic surfaces, and continuous collision detection be-
tween geometric primitives undergoing roto-translational mo-
tion. In Section 4, we also compare our library against the pop-

ular Filib++ library [LTG∗06, LTG∗11], achieving a faster per-
formance.

We are committed to making TIGHT a usable piece of software:
unlike a large share of other related libraries, TIGHT can be eas-
ily integrated into CMake projects. Its source code is available at
https://gitlab.com/fsichetti/tight.

2. Background and state of the art

Interval arithmetic [HJVE01] provides a set of operations on real
intervals I such that if x ∈ a = [a,a] ∈ I and y ∈ b = [b,b] ∈ I, then
x ⋆ y ∈ a ⋆ b, where ⋆ in the right-hand side is the interval version
of operation ⋆ on reals. We are interested in intervals whose lower
and upper bounds can be represented by FP numbers.

From now on, the set of representable FP numbers is denoted by
F. When a and b are in F, the result r = a ⋆ b may not be in F,
hence not representable. In that case, i = [ f p−(r), f p+(r)], where
f p−(r) = max( f : f ∈ F, f ≤ r) and f p+(r) = min( f : f ∈ F, f ≥
r), is the tightest representable interval containing r. As mentioned,
IEEE 754 requires that when ⋆ is an algebraic operation (or the
square root) an implementation of ⋆ must round the theoretically
exact result r to either f p−(r) or f p+(r), depending on the current
rounding mode. In most modern architectures, a particular regis-
ter within the CPU controls the rounding mode, and specific sys-
tem functions exist to set it. Therefore, a trivial approach to create
a tight interval for the operation a ⋆ b is to (1) set the rounding
mode to towards−∞, (2) execute a⋆b to determine the interval’s
lower bound, (3) set the rounding mode to towards+∞, (4) exe-
cute a⋆b to determine the interval’s upper bound. Since setting the
rounding mode is typically slower than executing arithmetic oper-
ations, a more efficient approach is (1) set the rounding mode to
towards+∞, (2) execute (−a)⋆b and switch the sign of the result
to determine the interval’s lower bound, (3) execute a ⋆ b to de-
termine the interval’s upper bound. Furthermore, if no other parts
of the program require a different rounding, step (1) can be exe-
cuted only once at the beginning. This approach is used by exist-
ing interval arithmetic libraries such as Boost [BMP06] and CGAL
[Pro21]. However, note that this approach works for the arithmetic
operations, because they are all odd functions (in the operand that
changes its sign), but cannot be extended immediately to cope with
functions that are not odd.

Another possibility is to deconstruct the binary representation of
the result r to directly modify the mantissa, exponent, and sign, and
produce a reasonably small interval around r. This approach is used
by Filib [LTG∗06, LTG∗11]. Alternatively, the error propagation
can be analyzed to derive a bound ϵ on the rounding so that the
interval i = [r − ϵ,r + ϵ] is guaranteed to contain r. This is how
libraries such as BIAS [Knü94] or GAOL [Gou16] work. Library
Filib++ [LTG∗06, LTG∗11] offers several modes that implement
the various strategies; according to the authors, the fastest is the
native_onesided_global mode, which adopts the strategy based on
a fixed rounding mode and change of sign described above.

The aforementioned existing libraries were comprehensively
compared by Tang and colleagues [TFS∗22] who evaluated di-
verse aspects, including their correctness, efficiency and precision
(in terms of interval tightness). They conclude that only Filib and
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Filib++ are always correct when transcendental functions are in-
volved, although the intervals they produce might be larger than
necessary. In contrast, Boost and BIAS may produce intervals that
do not contain the exact result. Also, Tang’s evaluation could verify
that libraries that use the rounding mode produce tighter intervals.
In our experiments, we compare against Filib++ with the fastest
mode.

Except for rather old architectures, most existing CPUs provide
SIMD registers and instructions that proved useful to accelerate in-
terval arithmetic libraries [Lam08]. The basic idea is to store both
bounds in a single 128bit-wide register and perform operations on
them in parallel. This and other optimizations exploiting more re-
cent AVX architectures were included in the NFG library [Att25]
that, to the best of our knowledge, represents the fastest existing li-
brary at the time of writing. Since NFG exploits the rounding mode,
it is also guaranteed to produce as-tight-as-possible intervals for all
the algebraic operations and the square root. Our TIGHT library
wraps around NFG while adding many other elementary and tran-
scendental functions, while keeping the guarantee to produce tight
intervals.

2.1. Correct rounding

Correct rounding (CR) refers to the property that an implementa-
tion of a mathematical function f has if, for any x that is repre-
sentable and contained in the domain of f , it returns the same re-
sults one would get by rounding the exact result f (x) to the target
representation.

Producing efficient CR implementations of functions is a dif-
ficult task that has been actively researched for many years. The
classical method involves performing a fast approximation of the
function with a known error bound, followed by a correctness
check, and a slower but higher-accuracy approximation if the check
fails. Interestingly, implementing CR double-precision functions is
more difficult than single-precision, because one can check correct
rounding exhaustively on 32-bit floats, which is infeasible in the
64-bit case. For double precision, correctness must either be proved
formally or tested on known hard-to-round cases.

The most notable libraries for CR mathematical functions are
CRlibm [DLDdM03] and RLibm [LN22]. CRlibm implements
several transcendental functions of one double-precision argu-
ment, correctly rounded in the four rounding modes towards+∞,
towards−∞, towards zero, to nearest. However, instead of round-
ing according to the CPU setting, it provides separate functions for
each rounding mode and assumes that the CPU is set to the de-
fault to nearest mode with ties-to-even (whereas interval arithmetic
uses directed rounding). To the best of our knowledge, the project
is no longer actively maintained. RLibm is a more recent project
that proposes a new approach to correct rounding by polynomial
approximants, but it is currently limited to single-precision inputs.

The CORE-MATH Project [SZG22] is an ongoing effort to build
a complete collection of correctly rounded C implementations of
mathematical functions to foster integration into existing math-
ematical libraries. CORE-MATH is actively developed and pro-
vides efficient CR routines for univariate and bivariate functions

with double-precision arguments. For a thorough account of correct
rounding we refer the interest reader to a recent survey [BHMZ25].

TIGHT uses CORE-MATH functions in its interval extensions
for all those functions that are not CR in the C++ standard library.

3. Implementing elementary functions

TIGHT’s interval class wraps the NFG interval library [Att25],
which efficiently supports CR interval computation, limited to the
arithmetic operations, the square, and the square root, i.e., those
floating-point operations for which the IEEE 754 standard pre-
scribes correct rounding. We extend the scope of the library to
also support transcendental functions, exploiting the results of the
CORE-MATH Project [SZG22], which provides CR floating-point
implementation of the most common transcendental functions.

Our major contribution consists of implementing CR interval
functions also for those transcendental functions, and providing a
whole support to both polynomial and transcendental interval com-
putation within a unified context. The functions currently supported
by TIGHT intervals are:

• basic arithmetic: x + y, x − y, xy, x/y, −x, |x|, max(x,y),
min(x,y);

• power functions: x2,
√

x, 3
√

x, 1/
√

x, and the generic xy;
• trigonometric functions and their inverses: sin(x), cos(x), tan(x),

arcsin(x), arccos(x), arctan(x);
• trigonometric functions with scaled argument: sin(πx), cos(πx),

tan(πx), arcsin(x)/π, arccos(x)/π, arctan(x)/π;
• hyperbolic functions and their inverses: sinh(x), cosh(x),

tanh(x), arcsinh(x), arccosh(x), arctanh(x);
• exponentials in base e, 2 and 10: ex, 2x, 10x, ex−1, 2x−1, 10x−

1;
• logarithms in base e, 2 and 10: log(x), log2(x), log10(x), log(1+

x), log2(1+ x), log10(1+ x);
• functions to convert to polar coordinates:

√
x2 + y2,

arctan2(x,y);
• the error functions erf(x), erfc(x).

3.1. Interval extension

Assuming the availability of a correctly rounded function f , we
want to obtain a correctly rounded inclusion function for f , that
is, an interval-valued function □ f such that the endpoints of the
resulting interval are correctly rounded outward.

If an input contains NaNs, infinity, or points that are outside the
domain of f , we return a NaN interval. Other libraries opt to pro-
vide some extended definition of operators to handle such inputs;
we postpone this to future work. In the following, we limit our dis-
cussion to valid inputs.

The challenge of extending a function to intervals with correct
rounding is twofold. First, we need an expression for the range of
the function; this is obtained by enumerating the possible cases for
a given function. Then, these expressions must be instantiated on
the input datum and rounded correctly - downward for the lower
bound and upward for the upper one.
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3.1.1. Computing extensions

When f is monotonically increasing on [x,x], the range of the func-
tion on an interval is easily obtained as □ f ([x,x]) = [ f (x), f (x)]
(Figure 1 left); if it is monotonically decreasing, the two endpoints
are swapped. If f is not monotonic on [x,x], we need to know where
f attains its extrema on the interval. As we will see for some func-
tions, even deciding that [x,x] lies in a part of the domain where f
is monotonic is tricky in floating-point arithmetic.

Once we know how to compute the range of the function in ex-
act arithmetic, correct rounding amounts to rounding the left end-
point down and the right endpoint up. Given that we are operating
in round-upward mode, the latter is free. To round down we can
always change the rounding mode and reset it after the operation.
However, changing rounding modes flushes the CPU pipeline, thus
it is a relatively expensive operation. Fortunately, it can be avoided
in most cases:

1. If f is odd, the result of f (x) rounded down can be computed
in upward rounding mode as − f (−x), since negation is always
exact (it only changes the sign bit). This is the same technique
used by NFG for arithmetic operations.

2. For non-odd functions, if we know the values of x for which
f (x) is representable in floating-point, we can check a priori
if (upward) rounding happens, and if it does, we take the next
smallest floating-point value.

3. Only for the remaining functions, we do change the rounding
mode to downwards rounding, and reset it to upwards after com-
puting the lower bound.

3.1.2. Computing arcsin(x), arctan(x), arcsin(x)/π, arctan(x)/π,
sinh(x), tanh(x), arcsinh(x), arctanh(x), 3

√
x, and erf(x)

All these functions are odd and monotonic. For an odd, mono-
tonically increasing function f for which we have access to a
CR implementation, the correctly rounded □ f is □ f ([x,x]) =
[− f (−x), f (x)].

3.1.3. Computing tan(x) and tan(πx)

Because the tangent is an odd function, rounding down is not a
problem. The only difficulty in this case is that x may be an inter-
val that crosses one of the vertical asymptotes of the function, so
additional checks are needed. Our logic works as follows:

1. if x has a width larger than a period, then it must contain a sin-
gularity and we stop;

2. otherwise, we compute the function at the endpoints, and be-
cause the two points differ by less than a period, x can only
contain a singularity if tan(x)> tan(x), in which case we stop;

3. if the previous tests passed, we return the intervals with the end-
points we already computed.

The same technique applies to the scaled version.

3.1.4. Computing arccos(x), arccos(x)/π, arccosh(x),
arccosh(x)/π, ex, ex −1, 2x, 2x −1, 10x, 10x −1, log(x),
log(1+ x), log2(x), log2(1+ x), log10(x), log10(1+ x) and
1/

√
(x)

For these monotonic functions we can devise a fast test that checks
whether the image of x is exactly representable Denote R ⊂ Dom f

the set of FP values such that every element of f (R) is a FP number.
The lower and upper bound are both computed with upward correct
rounding; if x ∈ R, the lower bound is left unchanged, otherwise it
is changed to the next smallest representable value.

To get the next smallest representable value, we could use the
nextafter function offered by the standard library, which op-
erates directly on the bit representation of the number. However,
because we are using upward rounding across our program, it is
slightly faster to compute the floating point number immediately
before y as −(ϵ− y) where ϵ is the smallest positive representable
number.

The list of all representable values for each of the functions listed
above is documented in the source code of the library and omitted
here for brevity.

3.1.5. Computing cosh(x) and
√

x2 + y2

The hyperbolic cosine is the only single-argument U-shaped func-
tion in our set (except x2, which is supported by NFG already). To
compute it, we take the absolute value of x (defined as the inter-
val of all possible values of |y| for all y ∈ x) and see if it contains
0. If it does, the lower bound is 1; otherwise it is cosh(|x|) rounded
down as in the previous section (unconditionally, since 0 is the only
number in R). The upper bound is simply cosh(|x|).

The Pythagorean sum (also known as hypot) is similar to
cosh(x), but in two variables. It returns the distance of the clos-
est and farthest point in the 2D box from the origin, rounded down
and up respectively (Figure 1 right). We compute |x| and |y| and
test if any of them contains zero; in such case, the minimum dis-
tance is simply max(|x|, |y|), where at least one of these numbers is
zero. Otherwise, since we have no fast and reliable way of know-
ing whether the distance is a representable number, we resort to
changing the rounding mode to compute the lower bound. The up-
per bound is easily computed in any case with a call to the CORE-
MATH function.

3.1.6. Computing sin(x), cos(x), sin(πx) and cos(πx)

Perhaps surprisingly, sines and cosines are the hardest functions to
implement.

Let us discuss rounding issues first. sin(x) and sin(πx) are odd
and rounding down is trivial. We know that the only value of x for
which cos(x) is a FP number is 0, so we can round down as in
Section 3.1.4. For cos(πx), the set R consists of rational numbers
with denominator 2, so we check if 2x is integer (multiplication by
2 is exact) and round down as before.

To compute the interval inclusion, we first check if x is larger
than a period of f , in which case we know it must contain at least
two consecutive extrema, and we can return [−1,1]. Otherwise, we
need to know the sign of f ′ at the two endpoints of x. If the signs
are equal, then x contains either 0 or 2 critical points; specifically,
it contains 2 critical points if its width is at least π (and again we
return [−1,1]), otherwise it contains none. If the signs are different,
then x contains a single critical point (Figure 1 center). This leaves
us with four cases to consider:

• x lies entirely within part of the domain where f is monotonically
increasing, so we return [ f (x)−, f (x)];
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• x lies entirely within part of the domain where f is monotonically
decreasing, so we return [ f (x)−, f (x)];

• x contains a minimum, so we return [−1,max( f (x), f (x))];
• x contains a maximum, so we return [max( f (x)−, f (x)−),1].

The cases where x has an endpoint at an extremum do not require
special handling. This leaves us with the issue of how to efficiently
compute the sign of f ′ at the endpoints of x.

For sin(πx) and cos(πx), the derivative changes sign at integer
multiples of 1/2, so we can check the value of ⌈2x⌉mod 4 (and
likewise for x, respectively); depending on whether we are comput-
ing the sine or cosine, two of the possible values correspond to a
positive derivative and the other two to a negative one. To correctly
get this result, we compute the ceiling operator by converting the
endpoints, multiplied by 2, to 64-bit integers; overflows are not a
problem, since past the value of 254 the distance between adjacent
double-precision FP numbers is at least as large as a full period of
the function, so non-singleton intervals will return [−1,1] anyway
and can be handled as a special case.

For the regular sin and cos, we cannot apply the same strat-
egy. One would like to know the consecutive integer multiples of
π/2 that contain a floating point value, but since π is irrational we
would need a correctly rounded function to compute x/π, or at least
πx. While such methods have been researched in previous work
[BM05], they are not part of CORE-MATH and are beyond the
scope of this work. Instead, we compare x and x with precomputed,
correctly rounded multiples of π/2 in the range [−2π,2π], and if an
endpoint is beyond this limit, we call the correctly rounded func-
tion corresponding to the derivative of cos or sin, which is more
expensive but gives correct results. For this reason, TIGHT’s cur-
rent implementation of sin and cos is relatively cheap if x lies in
[−2π,2π] and somewhat slower otherwise.

3.1.7. Computing erfc(x)

For erfc, we are not aware of an easy way to check if the image of a
number is representable. The function is monotonically decreasing,
so we implement it with a single change in rounding mode.

3.1.8. Computing xy and arctan2(x,y)

We provide two versions of the power function: one where x and y
are both intervals, but x is not allowed to have negative values, and
one where x can be any interval but y is an unsigned integer.

For the integer power function, we have a special case for y = 2
that calls NFG’s fast square function. In other cases, we test the
parity of the exponent and perform similar procedures to the other
even/odd functions discussed previously.

For the general power function, we distinguish nine cases based
on the position of the 2D box (x,y) on the x ≥ 0 half-plane: whether
x is above, below or contains 1, and whether y is above, below or
contains 0. For eight out of nine cases, we only require two calls to
CORE-MATH’s power function to compute the result; in the worst
case, i.e., when (x,y) contains (1,0), we need four.

The two-argument arctangent, i.e. the range of angles between
the positive horizontal semi-axis and the line formed by connecting
the origin with points in (x,y) (Figure 1 right); the values are in

(−π,π], requires a similar distinction of nine cases, only this time
x can be negative and so we check whether each intervals is above,
below or contain 0. Again, we do this to limit the number of calls to
the mathematical library, and in eight out of nine cases, we perform
two calls. The ninth case, where (x,y) contains (0,0), is degenerate,
and we return NaN. However, one of the non-degenerate cases is
very problematic, namely when x is in the negative half-space and
y contains 0. In this case, the range of angles contains the points
of angle π, and the function is discontinuous. Mathematically, one
should return the whole range [−π,π], but the meaningful result
would be the disjoint union [−π,a]∪ [b,π] for some values a,b. To
give meaningful results, we opt for a different solution: TIGHT’s
arctan2 function returns both an interval and a boolean flag that
signals the pathological case, and when the flag is on, we instead
return the complement of the range of angles of (x,y), i.e. the ones
that are not spanned by points in the box, with consequently in-
verted rounding. In the previous notation, we return [a,b] with a
rounded up and b rounded down. A caller that expects points in
this range should then check the flag and decide how to use this
result.

4. Results and comparison

We evaluate our library in several scenarios. Furthermore, because
Filib/Filib++ is the only library which is always correct when tran-
scendental functions are involved [TFS∗22], we compare TIGHT
with this representative of the state of the art.

All experiments were timed single-threaded on a server equipped
with Intel Xeon Gold 6430 CPUs and 64GB of RAM. The compiler
used is GCC version 13.3.0 on Ubuntu.

4.1. Benchmark comparison

We start by comparing the execution times and average interval
width of single functions in TIGHT and Filib++. To compute the
width, for each operation we select one or two singleton input in-
tervals that lie inside the function domain, and compute the number
of floating point values between the lower and upper ends of the
computed interval (plus one); a width of 1 ULP (or 0, in the case of
an exactly representable output) corresponds to a correctly rounded
result. To get timings, we call each function one million times; to
prevent the compiler from optimizing calls, and to evaluate the tim-
ing on non-singleton intervals, we perturb the input interval at each
iteration by enlarging it by an ULP on both sides, and sum the upper
and lower bound of each result to a dummy accumulator. Note that
some operations are omitted for Filib++ as they are not supported
in the library.

Estimated times for executing one interval operation with the
two libraries are reported in Table 1. Times are in nanoseconds.
Note that, for the simplest operations that cost about or even less
than one nanosecond, estimates are not fully reliable and may
change on different runs. The values reported in the table for those
operations are averages over different runs. However, we consis-
tently had at all runs faster times with TIGHT, for all those op-
erations that are already supported in NFG. For the newly imple-
mented transcendental functions, times are comparable, but some-
times they are slower with TIGHT. This is the cost of all additional
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Figure 2: Test problem: CCD of a triangle moving rigidly along a
screw trajectory, and another deforming triangle. The triangle on
top rotates and moves along an axis until the two primitives come
into contact.

operations that we undergo to guarantee correct rounding, which is
not guaranteed by Filib++.

The latter issue is evident by looking at the two rightmost
columns in Table 1, which report the width of the resulting inter-
val in ULPs (number of contiguous floating-point values), when the
input consists of a singleton [x,x]. While TIGHT always produces
intervals with a width of either zero or one ULP, hence correctly
rounded, Filib++ produces quite large intervals in many cases (it is
still correctly rounded, but slower, for algebraic operations).

4.2. Comparison with Filib++ within MiSo

To assess the practical effectiveness of our library, we integrate it
into the software MiSo [SPH∗25], which makes intensive use of in-
terval arithmetic. MiSo is a Python tool to generate interval-based
C++ solvers with correctness guarantees, which uses NFG for its
fast interval arithmetic, albeit with no support for non-algebraic op-
erations. Since MiSo’s architecture allows for easily switching the
numeric backend, we were able to perform a side-by-side compari-
son of our library and Filib++ for several problems, while extending
the software’s support to transcendental operators.

The problems presented in the following involve heavy use of
trigonometric functions that, as outlined above, are more expen-
sive to compute in TIGHT than in Filib++. However, as we shall
see, TIGHT’s result in faster solution times overall, thanks to faster
handling of basic arithmetic and its smaller intervals.

4.2.1. CCD along non-algebraic trajectories

We consider the classical problem of continuous collision detection
(CCD): given two primitives in space with some prescribed trajec-
tory, we seek the first time in [0,1] for which the primitives first
come into contact, and call it t∗. This type of test is essential in the
simulation field to guarantee that physical objects do not interpen-
etrate. In practice, finding the exact value of t∗ may be infeasible
and often unnecessary. With interval methods, we instead seek an

Table 1: Benchmark for single interval operations: times to exe-
cute a single operation (in nanoseconds) with TIGHT and Filib++
and the related width in ULPs of the interval returned when the
operands are singleton intervals of the type [x,x].

Operation
Avg. ns width in ULPs

TIGHT Filib++ TIGHT Filib++
+ 0.28 1.08 1 1
- 0.34 0.71 0 0
* 0.66 1.13 1 1
/ 0.89 1.30 1 1

min 0.30 - 0 -
max 0.30 - 0 -
abs 1.45 2.11 0 0
sin 98.20 17.34 1 23
cos 98.48 17.50 1 28
tan 128.41 18.59 1 52

asin 36.49 13.99 1 39
acos 20.15 13.44 1 36
atan 38.41 10.33 1 28

sinpi 30.12 - 1 -
cospi 31.37 - 1 -
tanpi 29.37 - 1 -

asinpi 40.24 - 1 -
acospi 44.97 - 1 -
atanpi 41.97 - 1 -
sinh 10.84 11.19 1 20
cosh 12.94 34.28 1 11
tanh 20.08 10.90 1 23

asinh 8.33 32.40 1 19
acosh 31.79 15.58 1 35
atanh 22.39 25.84 1 27
exp 14.84 17.68 1 9

exp2 17.90 18.59 1 9
exp10 19.61 18.28 1 10
expm1 15.06 10.51 1 14

exp2m1 66.32 - 1 -
exp10m1 78.21 - 1 -

log 39.91 10.89 1 9
log2 15.81 11.14 1 50

log10 58.41 13.76 1 44
log1p 15.36 14.59 1 12

log2p1 61.70 - 1 -
log10p1 69.79 - 1 -

sqrt 2.18 3.78 1 2
cbrt 18.78 - 1 -

rsqrt 21.32 - 1 -
erf 60.70 - 1 -

erfc 62.67 - 1 -
pow 136.80 36.31 1 15

hypot 39.20 - 1 -
atan2 28.07 - 1
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Figure 3: Test problem: surface-surface intersection (SSI) of two
parametric tori of inner radius 0.3 and outer radius 1, each shifted
by ±1.1 along the x axis.

interval T∗ that is guaranteed to contain t∗ and is smaller than a
user-specified precision δ > 0. Then the lower bound of T∗ tells
us a moment in time until which we can safely move the objects
without collisions, and the upper bound gives a moment when a
collision has surely happened already. The difficulty of the query
depends on the type of primitives, the type of trajectory, and the
precision required.

Within MiSo, this is formulated as a MINIMIZE problem, that is,
a constrained global optimization [SPH∗25]. In this case the opti-
mization variables are {u,v, t}, where u = (u0,u1) and v = (v0,v1)
are the parametric coordinates of the two primitives, and t is
time; the constraints are the domain constraints (u0,u1,v0,v1, t) ∈
[0,1]5,u0 + u1 ≤ 1,v0 + v1 ≤ 1 (which are all implicit in MiSo),
and the collision constraint d(x,y)< ϵ with a small but positive ϵ –
i.e., we only consider pairs of points for which collision happens.
The objective function is t – i.e., we want to find the collision that
happens earliest.

In our test, we consider two moving linear (i.e., flat) triangles,
where one is linearly deforming (i.e., each vertex follows a linear
trajectory independent of the others), while the other vertex is un-
dergoing a rigid roto-translation, following a spiral motion (Figure
2). More precisely, the center of the second triangle follows the
spiral, and its normal remains aligned with the spiral’s tangent. Of
course, computing the roto-translation requires trigonometric func-
tions, while all other computations involved are algebraic.

We test the same problem with different sets of parameters,
changing the speed of the rotation and the position of the other tri-
angle. The queries implemented with TIGHT take 27ms, 133ms
and 2.5s respectively, versus the 127ms, 756ms and 13.2s of
Filib++, for a speedup of approximately 5×.

4.2.2. Intersection of two parametric tori

Computing the intersection of parametric surfaces, also known
as surface-surface intersection (SSI), is an important operation in
CAD. In our example, we want to describe the intersection locus of
two tori expressed parametrically (Figure 3). Again, the paramet-
ric representation of each torus requires computing trigonometric
functions.

SSI can be formulated in MiSo as a SOLVE problem, that is, the
problem of covering the set of all solutions of a constraint system

Figure 4: An example where tighter intervals of CR functions pre-
vent errors: when the inputs to the problem are a few ULPs away
from producing pathological situations, CR minimizes error and
is often able to avoid failure. Moreover, its results are machine-
independent; a non-CR implementation may complete successfully
on one machine but fail on another.

within a certain tolerance. Being a conservative method, the algo-
rithm returns a region that is larger than the true solution, but is
guaranteed to contain every point of it.

Similarly to the previous example, the optimization variables are
{u,v}, where u = (u0,u1) and v = (v0,v1) are the parametric co-
ordinates of the two tori; the constraints are the domain constraints
(u0,u1,v0,v1)∈ [0,1]4 (implicit in MiSo), and the intersection con-
straint d(x,y) < ϵ. This formulation gives solutions in parameter
space rather than physical space. To be precise, this formulation
solves a more general version of the problem: since the parameter
space is 4-dimensional, the solution is a collection of 4D boxes that
describe pairs of contacting regions, up to the specified tolerance.

In both cases, the solver performs 11105 iterations and found
a solution composed of 6976 4D boxes. However, the result took
136ms to compute with TIGHT and 2186ms with Filib++, a
speedup of about 16×.

4.3. Pathological cases

Not producing tight enough intervals can have unpredictable results
for seemingly easy problems. We provide a very simple example
where returning a slightly larger interval results in the program be-
ing unable to compute the result.

Suppose we have a function f (x,y) defined on the plane that
is inversely proportional to the distance of point (x,y) to a circle
centered in the origin with radius 5 (Figure 4). Thus, we are evalu-
ating f (x,y) = 1/(

√
x2 + y2 − 5). This type of function resembles

contact potentials used in IPC physical simulations [LFS∗20]. We
want to evaluate f with interval arithmetic at point P(3+10−15,4+
10−15), so that P lies outside the sphere. Remember that, because
we are using interval arithmetic, we need not fear that adding a
small value leads to cancellation for very small ϵ: in those cases we

© 2025 The Author(s).
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simply get an interval that contains the true value. We compute this
function in three ways:

• with TIGHT intervals, and using the function hypot to compute
the Euclidean distance of P from the origin (which is absent in
Filib++);

• with TIGHT intervals, using only operators which are also sup-
ported by Filib++ (all algebraic in this case);

• with Filib++ intervals, using the same mode as the rest of the
paper.

In the first two cases, the denominator is correctly computed as
positive with TIGHT and the operation returns a real interval (al-
beit larger in the second case, due to multiple operations being in-
volved). When using Filib++, the square root produces an interval
with lower bound equal to the radius, resulting in a division by zero.

While this example involves only a few operations, for more
complex expressions, the propagation of error can be even more
dramatic. Correct rounding does not eliminate the issue, but it re-
duces propagation to a minimum and makes it predictable, since
each operation can introduce at most 1 ULP of error on each side.

5. Conclusions and future work

We have introduced TIGHT, an efficient C++ library for correctly
rounded interval arithmetic built on top of the state-of-the art in
both correctly rounded computations and interval arithmetic.

TIGHT is designed to be future-proof: if correctly rounded math-
ematical routines become the standard in the coming years, or more
performant CR methodologies are developed, switching the under-
lying library requires minimal changes. Crucially, since the result
of a CR operation is well defined, TIGHT will continue to return
the same results forever on all machines, even in the event of a
library change .

The library can still be improved in several ways:

1. NFG’s arithmetic operations owe their speed to vectorization.
Vectorized mathematical libraries exist [SP20] but we are not
aware of a correctly-rounded solution. In any case, having non-
CR, faster interval routines could still be useful for applications
that can cope with error and inconsistencies across machines.

2. TIGHT currently does not conform with the IEEE 1788-2015
standard for interval arithmetic [iee15]. Adding compliance and
testing with a framework such as [RBFZ22] would make the
library more easily integrated. This includes adding conformant
support for infinity and NaN values.

3. As mentioned in Section 3.1.6, integrating CR functions for
multiplication with an irrational constant value as in [BM05]
would bring a more consistent speed for sin and cos on arbitrary
arguments.

4. CORE-MATH also contains a CR implementation of the gamma
function (included in the C++ standard library), that could be
used to build an interval implementation, though it is not clear
whether this would be useful in practice.
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